Nilai lim_(x→2)⁡ (x^2-6x+8)/(3-√(17-2x^2))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 2} \ \frac{x^2-6x+8}{3-\sqrt{17-2x^2}} = \cdots \)

  1. 6
  2. 3/2
  3. 0
  4. -3/2
  5. -6

(UNBK SMA IPA 2019)

Pembahasan:

\begin{aligned} \lim_{x \to 2} \ \frac{x^2-6x+8}{3-\sqrt{17-2x^2}} &= \lim_{x \to 2} \ \frac{x^2-6x+8}{3-\sqrt{17-2x^2}} \times \frac{3+\sqrt{17-2x^2}}{3+\sqrt{17-2x^2}} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-2)(x-4)(3+\sqrt{17-2x^2})}{9-(17-2x^2)} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-2)(x-4)(3+\sqrt{17-2x^2})}{2x^2-8} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-2)(x-4)(3+\sqrt{17-2x^2})}{2(x-2)(x+2)} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-4)(3+\sqrt{17-2x^2})}{2(x+2)} \\[8pt] &= \frac{(2-4)(3+\sqrt{17-2(2)^2})}{2(2+2)} \\[8pt] &= \frac{(-2)(3+\sqrt{9})}{8} = -\frac{3}{2} \end{aligned}

Jawaban D.